
Tuomas Koskela!
NESAP postdoc!
NERSC / LBNL!
tkoskela@lbl.gov

Performance
Optimization of
XGC1 on Cori KNL

-	1	-	

February	27,	2018	

Thank you to all collaborators!

•  LBNL	
–  Brian	Friesen,	Ankit	Bhagatwala,	Mark	Adams,	Mathieu	Lobet,	
Tareq	Malas,	Andrey	Ovsyannikov,	Kevin	Gott,	Rahul	Gayatri,	
Zahra	Ronaghi	

•  PPPL	
–  CS	Chang,	Robert	Hager,	Seung-Hoe	Ku,	Stephane	Ethier	

•  ORNL	
–  Ed	D’Azevedo,	Stephen	Abbott,	Pat	Worley	

•  Intel	
–  Thanh	Phung,	Zakhar	Matveev,	John	Pennycook,	Martyn	
Corden,	Karthik	Raman	

•  RPI	
–  Eisung	Yoon,	Mark	Shephard	

-	2	-	

Outline

•  Introduction	to	XGC1	
•  Particle	Push	Vectorization	and	Data	Structure	
Reordering	Optimizations	

•  Toypush	mini-app	
•  Charge	Deposition	Threading	Optimizations	
•  Conclusions	

-	3	-	

Cori at NERSC

•  2388	Haswell	nodes	
–  2x	16	core	@	2.3	GHz	
–  40	MB	shared	L3	
–  128	GB	DDR	

•  Cray	Aries	Interconnect	
–  dragonfly	topology	

	

•  9688	Xeon	Phi	(KNL)	
nodes	
–  68	cores	@	1.4	GHz	
–  34	MB	distributed	L2	
–  96	GB	DDR	
–  16	GB	MCDRAM	(on-

package)	

-	4	-	

XGC1 is a Particle-In-Cell Simulation Code for
Tokamak (Edge) Plasmas

-	5	-	

PI:	CS	Chang	(PPPL)	|	ECP:	High-Fidelity	Whole	Device	Modeling	of	Magnetically	Confined	Fusion	Plasma	
	

Basic Plasma PIC Code Flowchart

Collect	Fields	
from	Mesh	to	

Particles	

Particle	Push	

Deposit	Charge	
From	Particles	

to	Mesh	

Solve	Fields	on	
Mesh	

-	6	-	

Computation	
Mapping	

XGC1 Unique Optimization Challenges

•  Complicated	Tokamak	Geometry	
–  Unstructured	gridin	2D	(poloidal)	plane(s)	
–  Nontrivial	field-following	(toroidal)	mapping		
between	planes	

–  Full-f	model,	exascale	simulations	will	have		
10	000	particles	per	cell,	1	000	000	cells	per		
domain,	100	toroidal	domains.	

•  Gyrokinetic	Equation	of	Motion	in	Cylindrical	
Coordinates	
–  +	6D	to	5D	problem	
–  +	O(100)	longer	time	steps	
–  --	Higher	(2nd)	order	derivative	terms	in	force	calculation	
–  --	Averaging	scheme	in	field	gather	

•  Electron	Sub-Cycling	

-	7	-	

In XGC1 Electron Time Scale is Separated
From the Ion Push in a Sub-Cycling Loop

Gather	Fields	
from	Mesh	to	

Ions	

Ion	Push	
Deposit	Charge	
From	Particles	

to	Mesh	

Solve	Fields	on	
Mesh	

-	8	-	

Computation	
Mapping	

Gather	Fields	
from	Mesh	to	
Electrons	

Electron	Push	

Electron	Sub-Cycling	

~50x	

Electron Push Sub-Cycling

-	9	-	

Motivation: XGC1 CPU time is dominated by
electron push sub-cycle

-	10	-	

Baseline	XGC1	Timing	distribution	on	1024	Cori	KNL	nodes	in	quadrant	flat	mode.	

Note:	This	run	actually	
has	a	32x	smaller	
number	of	electrons	&	
ions	than	production	
runs!	

Motivation: Ideal Strong Scaling* of Electron
Sub-Cycling On Cori

-	11	-	

KNL,	quadrant	cache		
	
Hybrid	MPI/OpenMP	
	
16	MPI	ranks	per	node/
16	OpenMP	threads	per	
rank.		
	
25	Bn	total	electrons,	
decomposed	to	MPI	
ranks	and	OpenMP	
threads	

*Requires	good	load	balancing	

(Simplified) Field following node mapping

-	12	-	

•  Grid	consists	of	
poloidal	(2D)	planes	
that	have	an	identical	
set	of	nodes	each.	

•  Nodes	connect	to	
neighboring	planes	by	
(approximately)	
following	the	magnetic	
field	

(Simplified) Particle Push Algorithm

-	13	-	

1.   Search	for	nearest	3	
mesh	nodes	to	the	
particle	position	&	map	
to	neighbor	plane.	
Calculate	neighbor	node	
indices	

2.   Interpolate	fields	from	
neighbor	mesh	nodes	to	
particle	position	

3.   Calculate	force	on	
particle	from	fields	

4.   Push	particle	for	time	
step	dt	

(Simplified) Particle Push Algorithm

-	14	-	

1.   Search	for	nearest	3	
mesh	nodes	to	the	
particle	position,	map	
to	neighbor	plane	and	
Calculate	neighbor	node	
indices	

2.   Interpolate	fields	from	
neighbor	mesh	nodes	to	
particle	position	

3.   Calculate	force	on	
particle	from	fields	

4.   Push	particle	for	time	
step	dt	

Main Bottlenecks in Electron Push: !
Advisor/Vtune view before

-	15	-	

Vtune	Summary	 Advisor	Summary	

Search	
Force	
E-Field	

Main Bottlenecks in Electron Push

•  E	and	B	Field	Interpolation	
–  Inner	loops	in	function	calls	over	nearby	grid	nodes	with	
short	trip	counts	make	auto-vectorization	ineffective	

–  Indirect	grid	access	produces	gather/scatter	instructions	
•  Search	on	Unstructured	Mesh	
– Multiple	exit	conditions	

•  Force	Calculation	
–  Strided	memory	access	in	complicated	data	types	
–  Cache	unfriendly	

-	16	-	

Main Optimizations in Electron Push

•  Enabling	Vectorization	
–  Insert	loops	over	blocks	of	particles	inside	short	trip	count	
loops	to	enable	automatic	vectorization	

–  Sort	particles	to	reduce	random	memory	accesses	
–  Tile	particle	loop	to	improve	cache	reuse	

•  Data	Structure	Reordering	
–  Store	field	and	particle	data	in	SoAoS	format	to	reduce	
number	of	gathers	and	improve	vectorization	efficiency	

•  Algorithmic	Improvements	
–  Sort	particles	by	the	mesh	element	index	instead	of	local	
coordinates	

–  Reduce	number	of	unnecessary	calls	to	the	search	routine	

-	17	-	

Re-Ordering Loops to Enable Vectorization

Baseline	code	 Vectorized	code	

-	18	-	

Loop	Over	Time	Steps	

Short	loop	over	nearby	nodes	

Loop	Over	All	Particles	
Loop	Over	Time	Steps	

Loop	Over	Blocks	of	Particles	

Sort	Particles	

Loop	over	Particles	in	Block	

Short	loop	over	nearby	nodes	

•  Sort	particles	to	reduce	random	memory	access	

•  Swap	the	order	of	time	step	and	particle	loops	to	improve	cache	reuse	

•  Insert	vectorizeable	loop	over	blocks	of	particles	inside	short	trip	count	loop	

•  Near-ideal	vectorization	in	compute-heavy	loops		
à	Indirect	memory	access	becomes	the	bottleneck	

•  Stores	field	data	at	particle	location	between	field	gather	and	particle	push	
•  During	push,	each	particle	stores	12	doubles	+	2	integers	+	a	field	structure	with	27	

doubles.	Common	access	pattern	is	accessing	3	components	of	a	vector	field	(x,y,z)	
•  AoS	à	Strided	when	accessing	one	data	type	of	multiple	particles	
•  SoA	à	Strided	when	accessing	multiple	data	types	of	a	one	particle	

Reorder Particle and Field Data Structures

AoS	
SoA	

-	19	-	

x1	 y1	 z1	 Bx1	 By1	 Bz1	 ...	

x2	 y2	 z2	 Bx2	 By2	 Bz2	 ...	

:	 :	 :	 :	 :	 :	 ...	

xN	 yN	 zN	 BxN	 ByN	 BzN	 ...	

x1	 x2	 ...	 xN	
y1	 y2	 ...	 yN	
z1	 z2	 ...	 zN	
Bx1	 Bx2	

	

...	
	

BxN	
	

By1	 By2	
	

...	
	

ByN	
	

Bz1	 Bz2	
	

...	
	

BzN	
	

:	 :	 :	 :	

Number	of	fields:	27	

N
um

be
r	o

f	p
ar
tic
le
s		

pe
r	b

lo
ck
:	3
2	

•  Stores	field	data	at	particle	location	between	field	gather	and	particle	push	
•  During	push,	each	particle	stores	12	doubles	+	2	integers	+	a	field	structure	with	27	

doubles.	Common	access	pattern	is	accessing	3	components	of	a	vector	field	(x,y,z)	
•  AoS	à	Strided	when	accessing	one	data	type	of	multiple	particles	
•  SoA	à	Strided	when	accessing	multiple	data	types	of	a	one	particle	
•  AoSoAà	Unit	stride	when	accessing	3	components	of	a	vector	field	of	multiple	

particles	

Reorder Particle and Field Data Structures

-	20	-	

x1	 y1	 z1	 x2	 y2	 z2	 ...	 xN	 yN	 zN	

Bx1	 By1	 Bz1	 Bx2	 By2	 Bz2	 ...	 BxN	 ByN	 BzN	

:	 :	 :	 :	 :	 :	 	x	 :	 :	 :	

Mx1	 My1	 Mz1	 Mx2	 My2	 Mz2	 ...	 MxN	 MyN	 MzN	

AoSoA/
SoAoS?	

Intel Advisor Classical Roofline for Electron
Push Kernel, KNL quad cache

Scalar	add	peak	

Vector	add	peak	

Single	thread	
performance	on	KNL	
for	entire	application	
	
3x	Speedup	achieved	
	
Large	increase	in	AI	
from	blocking/sorting	
	
Optimized	
performance	still	10x	
below	vector	peak,	AI	
would	be	high	enough	
to	reach	it.	
	
Lack	of	flops	mainly	
due	to	gather/scatters	

Higher	is	Better	

[T.	Koskela	et	al,	IXPUG	@	ISC’17]	

Main Optimizations in Electron Push:!
Advisor/Vtune view after

-	22	-	

Memory Access Patterns Remain an Issue

-	23	-	

Intel Advisor Integrated Roofline for Five
Hottest Loops, KNL quad cache

-	24	-	

KNL,	16	threads	

Mag	field	interpolation	
Mag	field	interpolation	
Force	Calculation	
Elec	field	interpolation	
Mag	field	interpolation	

[T.	Koskela	et	al,	submitted	to	ISC’18]	

Electron Push Speedup

-	25	-	

XGC1	Timing	on	1024	Cori	KNL	nodes	in	quadrant	flat	mode.	

3x	

Lower	is	Better	

Toypush Mini-App

-	26	-	

Toypush: Introduction/Motivation

•  The	electron	push	in	XGC1	is	practically	embarrassingly	

parallel	à	only	on-core	optimizations	matter,	scaling	is	
almost	perfect	

•  The	electron	push	“kernel”	is	still	rather	complex,	~	20k	lines	
of	F90	code,	with	a	deep	subroutine	call	tree,	which	makes	it	
hard	to	analyze	and	optimize	

•  To	determine	a	“speed	of	light”	for	a	particle	pusher	on	KNL,	
we	wrote	Toypush,	a	small	kernel	with	<1k	lines	of	code	
with	the	same	main	loops	as	the	XGC1	electron	push	
–  Triangle	interpolation	
–  Triangle	search	
–  Force	calculation	
–  RK4	push	

•  Toypush	was	optimized	in	an	Intel	dungeon	session,	with	
encouraging	results	[T.	Koskela,	CUG’17]	

-	27	-	

ToyPush Performance on Roofline

-	28	-	

•  Intel	Advisor,	cache-aware	roofline,	single	thread	on	KNL	
•  Good	vector	performance	from	the	Force	Calculation	kernel	
•  Interpolate	kernel	close	to	theoretical	peak,	Search	close	to	by	L2	bandwidth	

						Force	Calc	
						Interpolate	
						Search	

•  Single	thread	
performance	

•  10x	speedup	for	
Interpolate	kernel	

•  3x	speedup	for	Search	

•  https://github.com/
tkoskela/toypush	

Marker	size	~=	CPU	time	

Toypush Conclusions

•  We	optimized	a	mini-app	to	attain	peak	on-node	
performance	in	the	electron	push	algorithm	on	KNL.	
–  Main	bottlenecks	are	search	and	interpolation	
–  We	were	successful	in	vectorizing	and	pushing	them	close	to	
maximum	attainable	performance	based	on	the	roofline	model	

•  Porting	optimizations	to	XGC1	not	as	easy	as	we	had	
hoped,	however	a	3x	speedup	in	electron	push	has	
been	achieved	
–  Electron	push	remains	the	most	expensive	kernel,	followed	by	
Poisson	solver	(PETSc	linear	algebra)	

•  Toypush	is	a	useful	mini-app	benchmark	for	particle	
pushing	applications	on	unstructured	meshes	

-	29	-	

Charge Deposition

-	30	-	

In XGC1 Electron Time Scale is Separated
From the Ion Push in a Sub-Cycling Loop

Gather	Fields	
from	Mesh	to	

Ions	

Ion	Push	
Deposit	Charge	
From	Particles	

to	Mesh	

Solve	Fields	on	
Mesh	

-	31	-	

Computation	
Mapping	

Gather	Fields	
from	Mesh	to	
Electrons	

Electron	Push	

Electron	Sub-Cycling	

~50x	

Charge Deposition Algorithm

•  Charge	deposition	bins	particle	charge	density	from	the	
particles	onto	the	grid	nodes	

•  In	XGC1	grid	is	only	decomposed	into	planes	à	each	MPI	
process	deposits	charge	from	its	particles	on	entire	plane.	
–  Aim	to	run	with	200	000	grid	element	planes	on	KNL	
–  Best	code	performance	(overall)	with	4	ranks	per	node,		

aim	to	run	~2	000	000	particles	per	rank	
–  Electron	binning	array	size	=	grid	elements	per	plane	*	2	planes		

à	number	of	electrons	>>	array	size	
–  Ion	binning	array	size	=	electron	binning	array	size	*	O(10)	velocity	

space	grid.	
à	number	of	ions	<<	array	size	

•  Deposition	is	threaded	with	OpenMP	(64	threads)	
–  Need	to	avoid	data	races	when	writing	to	binning	array	

-	32	-	

Initial State: Poor Weak Scaling of Charge
Deposition

-	33	-	

•  At	small	scale	the	cost	of	charge	deposition	is	small	compared	to	electron	
push.	Need	to	scale	it	up	at	that	level.	

•  Ions	5x	more	expensive	than	electrons	because	of	gyro-averaging	
•  Nearly	linear	slowdown	with	problem	size	

Compute	
Nodes	

Total	Grid	
Nodes	

Total	Particles	

32	 7	500	 200	M	

64	 15	000	 400	M	

128	 30	000	 800	M	

256	 60	000	 1.6	Bn	

512	 120	000	 3.2	Bn	

1024	 240	000	 6.4	Bn	

2048	 480	000	 12.8	Bn	

6%	of	electron	push	

120%	of	electron	push	

Original Charge Deposition

-	34	-	

Allocate	private	arrays	for	each	
thread	

Each	thread	initializes	its	private	
array	to	0		

Each	thread	deposits	particles	to	
private	array	à	avoids	data	races	

Reduce	private	arrays	manually	on	
master	thread	+	 +	 +	

=	

Optimization I: OMP reduction

-	35	-	

Allocate	single	array	
à	64x	smaller	memory	footprint	

!$omp	reduction(+)	à	Creates	
private	arrays	and	initializes	to	0	

Reduce	private	arrays	at	the	end	of	
parallel	region	

Deposit	particles	to	private	arrays	
	à	Avoids	data	races	

Optimization II: Atomic update

-	36	-	

Allocate	single	array		
à	64x	smaller	memory	footprint	

Initialize	single	array	to	0		
à	64x	faster	with	threads	

Deposit	particles	atomically	
à	Avoid	data	races	

No	need	for	reduction	

KNL Performance Results

-	37	-	

“Electrons”	 “Ions”	

Atomic Updates Beat Reduction Only When
the Number of Updates is Relatively Small

-	38	-	

•  Atomic	overhead	is	constant/particle	while	reduction	overhead	is	constant/grid	
•  Note:	Atomic	code	does	not	vectorize	à	not	significant	as	long	as	it	scales	well	

Weak Scaling of Charge Deposition with
Atomic Updates

-	39	-	

•  Ideal	scaling	of	electron	charge	deposition	
•  Some	performance	degradation	in	ion	charge	deposition,	but	>	10x	faster	than	

before	at	2048	nodes.	
•  “Fast	enough”	to	be	insignificant	compared	to	particle	push	

Weak	Scaling	-	Original	 Weak	Scaling	-	Optimized	

Summary And Conclusions

•  Optimizations	have	improved	vectorization	and	memory	access	

patterns	in	XGC1	electron	push	kernel	
–  3x	gained	in	total	performance	
–  Optimized	electron	push	kernel	has	roughly	equal	per-node	performance	

on	KNL	and	Haswell	
–  Not	memory	bandwidth	bound	à	Focus	on	enabling	vectorization,	

improving	memory	access	patterns	
–  Theoretically	still	room	for	~10x	improvement.	Limited	by	Gather/Scatter	

latency,	Memory	alignment,	Integer	operations,	Type	conversions,	...	
•  Lessons	learned	from	optimization	

–  Achieving	good	vectorization	can	require	major	code	refactoring,	
especially	if	the	code	has	long	subroutine	call	chains	

–  Memory	latency	is	hard	to	analyze	
–  Large	array	initializations	are	expensive	
–  When	writing	OpenMP	code,	take	advantage	of	OpenMP	features		

(Besides	“omp	parallel	do”)	

-	40	-	

Thank you!

-	41	-	

Performance Comparison

-	42	-	

Performance Comparison

-	43	-	

Scaling Studies

-	44	-	

Strong Scaling Parameters

Compute	Nodes	 Grid	Nodes	Per	Rank	 Particles	Per	Rank	

256	 448	 12.2	M	

512	 224	 6.1	M	

1024	 112	 3.1	M	

2048	 56	 1.5	M	

4096	 28	 0.75	M	

-	45	-	

•  16	MPI	ranks	per	Node,	16	OpenMP	Threads	per	rank	
•  5	Bn	total	particles	
•  57	000	total	grid	nodes	per	plane,	32	planes	
•  Quadrant	Cache	mode	

XGC1 Strong Scaling up to 4096 KNL Nodes

-	46	-	

16	MPI	ranks	per	node,	
16	OpenMP	threads	per	
rank.	
	
Strong	scaling	for	
problem	size	of	25	Bn	
ions	and	electrons,	grid	
representative	of	present	
production	runs	(DIII-D	
tokamak)	
	
Ideal	Scaling	in	electron	
push	
	
30%	scaling	deficit	in	
main	loop	at	4096	nodes	
(half	machine	size)	

Lower	is	Better	

Particle Weak Scaling Parameters

Compute	Nodes	 Grid	Nodes	Per	Rank	 Particles	Per	Rank	

32	 3584	 0.4	M	

64	 1792	 0.4	M	

128	 896	 0.4	M	

256	 448	 0.4	M	

512	 224	 0.4	M	

1024	 112	 0.4	M	

2048	 56	 0.4	M	

-	47	-	

•  16	MPI	ranks	per	Node,	16	OpenMP	Threads	per	rank	
•  57	000	total	grid	nodes	per	plane,	32	planes	
•  Quadrant	Cache	mode	

XGC1 “Weak Scaling” Up to 2048 KNL Nodes

-	48	-	

Weak	Scaling	in	particle	
structure	size	for	fixed	
grid	size	
	
Grid	representative	of	
present	production	runs	
(DIII-D	tokamak)	
	
60-70%	of	time	in	
electron	push	
	
Slowdown	from	32	to	
2048	nodes:	20%	
	
~50%	slowdown	at	full	
machine	size	(9600	
nodes)	by	extrapolation	

Lower	is	Better	

Weak Scaling Parameters

Compute	
Nodes	

Grid	Nodes	Per	
Rank	

Total	Grid	
Nodes	

Particles	Per	
Rank	

Total	Particles	

128	 117	 3	750	 1.75	M	 900	M	

256	 117	 7	500	 1.75	M	 1.8	Bn	

512	 117	 15	000	 1.75	M	 3.6	Bn	

1024	 117	 30	000	 1.75	M	 7.2	Bn	

2048	 117	 60	000	 1.75	M	 14.4	Bn	

4096	 117	 120	000	 1.75	M	 28.8	Bn	

8192	 117	 240	000	 1.75	M	 57.6	Bn	

-	49	-	

•  16	MPI	ranks	per	Node,	16	OpenMP	Threads	per	rank	
•  Quadrant	Cache	mode	

XGC1 Weak Scaling

-	50	-	

Weak	Scaling	in	particle	
structure	size	and	grid	size	
	
Grid	representative	of	
production	runs	for	Cori	(JET	
tokamak)	
	
60-70%	of	time	in	electron	
push	
	
Slowdown	from	128	to	2048	
nodes:	16%	
	
~90%	slowdown	at	8192	
nodes.	
	
Poor	Weak	Scaling	at	large	
scale	caused	by		load	
imbalance	

Single node thread scaling of electron push
kernel

-	51	-	

Performance	gain	from	
MCDRAM	only	when	
using	more	than	2	
threads/core	à	KNL	
outperforms	Haswell	
node	when	all	logical	
threads	are	used	
	
KNL:	64	physical	cores/4	
hyper	threads	
Haswell:	32	physical	
cores/2	hyper	threads	
	
KMP_AFFINITY=compact	
KMP_PLACE_THREADS=1
T	(N	<=	64)	
2T	(N	==	128)	
4T	(N	==	256)	
OMP_NUM_THREADS=N	

Wall	Time	–	Lower	is	better	

1	Node,	4	MPI	ranks	per	node	

Original Ion Charge Deposition Pseudo Code

-	52	-	

allocate(density(nnode,2,nvel,nthreads))	
	
!$omp	parallel	do	...	
do	ith	=	1,nThreads	
		density(:,:,:,ith)	=	0	
			do	iprt	=	1,nParticles_per_thread	
						call	deposit_charge(iprt,density(:,:,:,ith))	
			end	do	
end	do	
	
!$omp	parallel	do	...	
do	ith	=	1,nThreads	
			density(:,:,:,1)	=	density(:,:,:,1)	+	density(:,:,:,ith)	
end	do	

Allocate	private	copy	for	each	thread	

Initialize	all	private	copies	to	0		

Deposit	particles	to	private	copy	–	
avoids	data	races	

Reduce	private	copies	

Legend:	
OpenMP	|	Loops	|	Instructions	

Optimized code I: Omp reduction

-	53	-	

allocate(density(nnode,2,nvel))	
	
!$omp	parallel	do	reduction(+:density)	...	
do	iprt	=	1,nParticles_per_thread	
		call	deposit_charge(iprt,density)	
end	do	

Allocate	single	copy		
à	64x	smaller	memory	footprint	

Declare	reduction(+)	à	Creates	
private	copies	and	initializes	to	0	

Reduce	private	copies	at	the	end	of	
parallel	region	

Deposit	particles	

Legend:	
OpenMP	|	Loops	|	Instructions	

Optimized code II: Omp atomic

-	54	-	

allocate(density(nnode,2,nvel))	
	
!$omp	parallel	do	...	
do	inode	=	1,nNodes	
			density(inode,:,:)	=	0	
end	do	
	
!$omp	parallel	do	shared(density)	...	
do	iprt	=	1,nParticles_per_thread	
			!$omp	atomic	
			call	deposit_charge(iprt,density)	
end	do	

Allocate	single	copy		
à	64x	smaller	memory	footprint	

Initialize	single	copy	to	0		
à	64x	faster	with	threads	

Deposit	particles	atomically	
à	Avoid	data	races	

Legend:	
OpenMP	|	Loops	|	Instructions	

